Argument Extraction from News

نویسندگان

  • Christos Sardianos
  • Ioannis Manousos Katakis
  • Georgios Petasis
  • Vangelis Karkaletsis
چکیده

Argument extraction is the task of identifying arguments, along with their components in text. Arguments can be usually decomposed into a claim and one or more premises justifying it. The proposed approach tries to identify segments that represent argument elements (claims and premises) on social Web texts (mainly news and blogs) in the Greek language, for a small set of thematic domains, including articles on politics, economics, culture, various social issues, and sports. The proposed approach exploits distributed representations of words, extracted from a large non-annotated corpus. Among the novel aspects of this work is the thematic domain itself which relates to social Web, in contrast to traditional research in the area, which concentrates mainly on law documents and scientific publications. The huge increase of social web communities, along with their user tendency to debate, makes the identification of arguments in these texts a necessity. In addition, a new manually annotated corpus has been constructed that can be used freely for research purposes. Evaluation results are quite promising, suggesting that distributed representations can contribute positively to the task of argument extraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

Using Repeated Patterns across Comparable Articles for Paraphrase Acquisition

We focus on paraphrases for information extraction: expressions which should produce the same extraction output. These expressions are acquired automatically from comparable news articles (articles from the same day, on the same topic). Candidate paraphrases are paths in predicate argument structure starting from matching anchors (typically, names) in the two sentences. By using such syntactica...

متن کامل

Hybrid Method for Automated News Content Extraction from the Web

Web news content extraction is vital to improve news indexing and searching in nowadays search engines, especially for the news searching service. In this paper we study the Web news content extraction problem and propose an automated extraction algorithm for it. Our method is a hybrid one taking the advantage of both sequence matching and tree matching techniques. We propose TSReC, a variant o...

متن کامل

An Effective and Efficient Web News Extraction Technique for an Operational NewsIR System

Web information extraction, in particular web news extraction is an open research problem and it is a key point in NewsIR systems. Current techniques fail in the quality of the results, the high computational cost or the necessity of human intervention, all of them critical issues in a real system. We present an automated approach to news recognition and extraction based on a set of heuristics ...

متن کامل

Keyphrase Cloud Generation of Broadcast News

This paper describes an enhanced automatic keyphrase extraction method applied to Broadcast News. The keyphrase extraction process is used to create a concept level for each news. On top of words resulting from a speech recognition system output and news indexation and it contributes to the generation of a tag/keyphrase cloud of the top news included in a Multimedia Monitoring Solution system f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015